The minimum everyone should know about clinical trial methodology What makes a good clinical research?

Introduction to Clinical Trial Methodology

Our objectives:

- 1. To get basics of clinical trial methodology:
- What you should know?
- What will help you in reviewing clinical trial protocols?
- 2. To be able to train other patients, families, patient organizations.

What will we do?

- 1. Talk about basics of clinical trials
- 2. Apply what we have seen and review a protocol

Please use the chat box at anytime!

What is the first word that comes to your mind when talking about methodology of clinical trials?

Please insert one word in the app!

From the molecule to the drug

1. FIND THE RIGHT MOLECULE: Therapeutic interest

2. PRE CLINICAL EVALUATIONS: Laboratory, animal studies

3. CLINICAL EVALUATIONS: Phases I to IV

First administration in Human Not in children
Healthy volumet

Healthy volunteers

Tolerance

Absorption, Diffusion, Metabolism, Excretion

(pharmacokinetics)

Phase II

- Dose effect relationship
- Optimal dose
- Homogenous and limited number of patients

Phase III

- Efficacy of the therapeutic
- Clinical outcomes
- Benefit risk ratio
- Large number of patients, representative population

Phase IV

- Strategies,
- Pharmacovigilance (rare adverse reactions)
- Epidemiology, large population
- Real-life conditions
- After MA

Among several thousands molecules, only one will make it as a medicine

Evidence based medicine

Sacket: "Use of current best evidence in making decisions about care of individual patients"

Individual clinical expertise

Best available external evidence

EnvironmentPatient's specificities

Evidence based medicine

What does it mean?

Individual clinical expertise

Role of the physician To provide the best care to the patient

- To prescribe a treatment only if useful
- Based on evidences of the effect of the treatment
- => Integrating results from randomized clinical trials in his practice

Evidence based medicine

What does it mean?

Level of evidence

Case study

Uncontrolled studies (cohorts)

Controlled studies (randomized CT)

Meta analysis (several randomized CT)

Best available external evidence

Evidence based medicine

What does it mean?

Taking into account the patient

- specificities,
- wishes,
- medical environment

Environment Patient's specificities

In cystinosis, a compound called cystine accumulates in lysosomes and lead to kidney failure

Cysteamine can linked to cystine and help cystine out of the lisosomes

Herrende la molérnie

IDEA C

Cysteamine could improve kidney function and avoid kidney failure

YPOTHESIS

Disease mechanism

ID

This hypothesis needs to be verified trials of clinical trials of a molecule

MENT = THERAPEUTIC HYPOTHESIS

The objectives and endpoints

1 CLINICAL TRIAL

1 HYPOTHESIS (issued from adequate background)

1 PRIMARY OBJECTIVE (clear and clinically relevant)

CORRESPONDING ENDPOINT(S) = to evaluate the effect of the treatment on a well-defined population in specific conditions

The number of subjects needed is calculated from this hypothesis

MULTIPLE SECONDARY OBJECTIVES POSSIBLE (exploratory)

How would you demonstrate the efficacy of a therapeutic?

- 1. By giving the drug to some patients and observe what happens after a sufficient time.
- 2. By giving the drug to some patients and not giving it to others and compare what happens after a sufficient time.
- 3. By giving the drug to some patients then not giving it to the same patients and observe the differences, after a sufficient time.

Please answer!

Clinical trial = tool measuring efficacy

Role of methodology: Get the true value of efficacy

How to demonstrate the efficacy of a therapeutic?

Patients who take the treatment do better than those who don't take it

- Curative treatment
- Prevention
- Safety

=> Need for comparison : control groups

Placebo

Standard treatment

Evolution of the disease

Patients

Other treatments
Background, genetics
Severity of the disease,
Psychological considerations
....etc...

+ known or unknown factors

Evolution of the disease Is this working? er treatments round, genetics y of the disease, gical considerations ...etc... + known or unknown factors

Patients

Other treatments
Background, genetics
Severity of the disease,
Psychological considerations
....etc...

+ know nor unknown factors

End of treatment

End of treatment

Belonging to a group depends only from random ensuring:

Comparable groups with characteristics well distributed

A good randomization is centralized, unpredictable

Patients

RANDOMIZATION

Other treatments
Background, genetics
Severity of the disease,
Psychological considerations
...etc...
+ know nor unknown factors

End of treatment

Double blind

- Neither the patient nor the physician knows what treatment the patient is receiving
- Use of a placebo
- Single blind assessment when double blind impossible

Patients

RANDOMIZATION

End of treatment

End of treatment

TRUE TREATMENT EFFECT

Population and patient follow-up

- Population needs to be defined very precisely
 - What is our targeted population?
 - Is it representative?
- Eligibility criteria
 - Demographic data
 - Definition of the disease
 - Authorized concomitant medications...
 - Other associated comorbidities?

Some statistics (the word that should not be pronounced!)

- Chance versus "real effect"
 - Can explain apparent results
- Probability: p to observe a difference only due to chance when there is no difference between the two groups
- Alpha: threshold to reject chance (5%)
- NSN: number of subjects needed; What is the expected difference between the two groups. The smaller it is the biggest NSN.

More statistics

- Interpretation of results :
 - Statistically significant or not (what does it mean?)
 - p < 0.05
 - If statistically significant, is it clinically relevant? Is it due to treatment?
 - If not statistically significant, is there no difference between groups? Was the power of the study sufficient (patients)? => NO CONCLUSION

THE STUDY PROTOCOL - CONTENT

- 1 General Information (trial title,, sponsor, date and version)
- 2 Background Information
- 3 Trial Objectives and Purpose
- 4 Trial Design
- 5 Selection and Withdrawal of Subjects
- 6 Study treatment
- 7 Efficacy and safety assessments
- 8 Statistics

- 9 Direct Access to Source Data/Documents
- 10 Quality Control and Quality Assurance
- 11 Ethical and regulatory considerations
- 12 Data Handling and Record Keeping
- 13 Financing and Insurance
- 14 Publication Policy
- 15 Supplements

